Scheme I

(4),H(7); H(6),H(3); C(5)-OH, H_{Me} ; and $H_{Me(6)}$,R'] and one 1,6-H,O interaction $[H(4),O(9)_{ax}]$ is unlikely to be involved. Since 7a is destabilized by one additional gauche (1,6) interaction

 $(H_{Me(4)},R')$ relative to **8a** (i.e., $\Delta G^{\circ} \approx 0.9$ kcal/mole), the observed 4.6:1 kinetic ratio of 5a:4a is reasonable is one assumes that ΔG^* for the closure of each of 6a-9a is identical. Ground-state conformational arguments would then, of course, translate directly into transition-state energy differences.

For 3b (→5b:4b in 1.2:1) there is an identical number of 1,6interactions in both 7b and 8b. Equal population of these preclosure conformations leads to the near unity kinetic ratio.

For 3c (\rightarrow 5c:4c in \geq 350:19) there is no viable preclosure conformation that leads to the cis lactone (i.e., both 6c and 7c embody 1,7-interactions), and virtually all reaction proceeds via

The stereochemical assignments for 1-5 were initially based upon extensive analysis of ¹H NMR data and the X-ray structure of dilactone 1b.2 Synthetic correlation to known compounds now

supplements that evidence. Thus, oxidative decarboxylation (1.3 equiv of Pb(OAc)₄, 0.2 equiv Cu(OAc)₂·H₂O, 1.3 equiv of py, PhH, Δ)¹⁰ of **5c** generated a mixture of olefins **10c** (~1:1), which

was cleaved (NaIO₄, RuCl₃·3H₂O) to provide a pair of acids from which the methyl ester of Prelog-Djerassi lactone 1111 could be separated (32%) after diazomethane treatment. The Kochi reaction¹⁰ of **5b** led to isomers **10b**, which were reduced (H₂, Pd/C) to d.l-invictolide (12, 59% from 5b; 47% from 1b), the recently isolated¹² queen recognition pheromone of the red imported fire ant. Each of these syntheses confirms the trans-5,6-disubstituted valerolactone nature of 5 and constitutes a highly stereoselective four-step preparation from 1b or 1c, themselves readily accessible in four pots from 3-pentanone and methyl acrylate.²

Acknowledgment. This investigation was supported by Grant 29077, awarded by the National Institute of General Medical Sciences, DHHS. Purchase of the Nicolet NT-300 WB NMR instrument was made possible through Grant NSF CHE 79-26027. We thank Drs. J. H. Tumlinson and J. R. Rocca for providing copies of high-field ¹H NMR spectra of invictolide.

Additions and Corrections

The Mechanism of the Dismutation of Superoxide Catalyzed by Copper(II) Phenanthroline Complex and of the Oxidation of Copper(I) Phenanthroline Complex by Oxygen in Aqueous Solution [J. Am. Chem. Soc. 1983, 105, 7276]. SARA GOLDSTEIN and GIDON CZAPSKI*

 $E^{\circ}_{O_2/O_2^{-}} = -0.33 \text{ V}$ which was used is defined for 1 at of O_2 . In our calculations the value should be $E^{\circ}_{O_2/O_2} = -0.16 \text{ V}$ which is defined for 1 M of O_2 .

On page 7279 in the paragraph Redox Potential of (op)₂Cu²⁺ the following corrections should be made: $E^{\circ}_{O_2/O_2}$ should be -0.16 V rather than -0.33 V; $E^{\circ}_{(\text{op})_2\text{Cu}^{2+}/(\text{op})_2\text{Cu}^{+}}$ should be 0.11 V rather than -0.055 V; K_{12} should be 1.66 \times 10¹³ rather than 5.62 \times 10¹⁵; and k_{-12} should be 1.77 \times 10⁻⁵ M⁻¹ s⁻¹ rather than 5.25 \times 10⁻⁸ M⁻¹ s⁻¹.

On page 7280, 9th line in Conclusion: $E^{\circ}_{(op)_2Cu^{2+}/(op)_2Cu^+}$ should be 0.11 V rather than -0.055 V.

⁽⁹⁾ The observed "kinetic" ratio is critically dependent upon the precise conditions (pH and length of exposure to acid) for the quench of salt 3c. The highest observed ratio was 350:1 (pH 3, rapid handling), but typical workup (pH \sim 2, 5 min for extraction) gave ratios in the still synthetically useful range of 20-150:1. Rapid, partial equilibration presumably accounts for this variability.

⁽¹⁰⁾ Sheldon, R. A.; Kochi, J. K. "Organic Reactions"; Wiley: New York, 1972; Vol. 19, Chapter 4.

⁽¹¹⁾ Ireland, R. E.; Daub, J. P. J. Org. Chem. 1981, 46, 479.
(12) Rocca, J. R.; Tumlinson, J. H.; Glancey, B. M.; Lofgren, C. S. Tetrahedron Lett. 1983, 24, 1893.